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Abstran A formalism is developed for calculahg Beny phases for non-adiabatic time- 
periodic quantum systems when a dynamical invariant is known. It is found that, when the 
invariant is periodic and has a non-degenerate spectrum, this method allows a convenient way 
to obtain generalired Beny phases and the pmper cyclic initial states. The method is applied 
to Lhe generalized harmonic oscillator and the two-level system, where the invariant operaton 
are explicilly constructed. Formulae for the mnventional Beny’s phases are readily obtained by 
taking the adiabatic limit of the exact results. 

1. Introduction 

Recently, there has been considerable interest in Berry’s phase for time-periodic quantum 
systems, first discussed by Berry [l] in an adiabatic context and later extended to non- 
adiabatic and non-periodic motion [2,3]. 

In a recent paper, Moore and Stedman [4] showed that by proper choice of the 
initial states Berry’s formulation can be extended in a general way to non-adiabatic “time 
evolution. Their treatment is based on the knowledge of the exact evolution operator Ll(t). 
Furthermore, an operator decomposition for c(t) was developed to calculate the initial 
states and their associated Berry phases. Some remarks can be made at this point. (i) It is 
well known that even for simple systems the construction of the exact evolution operator is 
in itself a difficult task. (ii) The decomposition for o(t) and the subsequent calculation of 
the Berry phase is in most cases non-trivial. 

The purpose of this paper is to elucidate the intimate connection between dynamical 
invariants and generalized Berry phases. If an invariant operator for the system is known, 
then there is a convenient way to construct both the cyclic initial states and their associated 
Berry phases. The method avoids the use of the evolution operator C( t )  and is much 
simpler to apply than the one suggested previously in [4]. 

In section 2, the formalism is developed based on the existence of a dynamical invariant, 
which is constructed using the dynamical Lie algebra generated by the Hamiltonian [5,6]. 
Sections 3 and 4 present detailed applications to two different models: the generalized 
harmonic oscillator and the two-level system. In the first case, the well known (generalized) 
Lewis invariant [7,81 is rederived. Finally, in section 5 ,  the adiabatic limit is taken in order 
to compare our results with conventional ones. 

5 Permanent address: Departamento de Ffsica, Univenidad Nacional de La Plata, CC 67.1900 La Plata, Argendna. 
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2. Formalism 

Consider a quantum system whose Hamiltonian k(t) is T-periodic. An initial state Ib(0)) 
will evolve as I$@)) = U(?) Ib(O)), where the evolution operator 00) is the solution of 
the Schrodinger equation 

D B MonIeolivu er a! 

As we have mentioned above, Moore and Stedman [4] extended Berry's formulation of the 
geometric phase for timeperiodic Hamiltonians to the case of non-adiabatic evolution. In 
their formalism, the evolution operator 6(t) is decomposed in a Flquet product form 

@(r) = i(t)e'"' (2.2) 
where i ( t )  is unitary and T-periodic and M is Hermitian and constant. The initial condition 
c(0) = f implies 2(0) = k(T) = i. This decomposition is not unique 191. 

The cyclic initial states I$"(O)) for the evolution in question are precisely the eigenstates 
of k, as can be seen from 

IMT)) = 0 ~ )  I&,(O)) =eix- IMO)) (2.3) 
i.e. each state returns to itself after a time T, up a phase xm. As this is the usual condition 
for the so-called Floquet states [lo, 111 we can relate the phase xm to the quasi-energies G~ 

associated with the Floquet states: xm = -cmTfh. According to Moore and Stedman [4] 
the non-adiabatic geomehic phases associated with the initial states Ibm(0)) are 

T 
Ym = i (bm(0)I i t ( t ) h  I$m(O)) df (2.4) 

where the dot denotes differentiation with respect to I. 
In what follows, we assume that the system possesses a dynamical invariant f ( t )  

which is one of a complete set of commuting observables. so that there is a complete set of 
eigenstates of f ( f ) .  Furthermore, f ( t )  should not involve timederivative operations. The 
invariants with which we treat the generalized harmonic oscillator and the two-level system 
satisfy these requirements. For such a system, Lewis and Riesenfeld 181 provide a way to 
construct the solution of the Schrijdinger equation 

I$(t)) = X G ~  Itl.&)) Ih.t(O) = ~'"'(') In,k 1 )  (2.6) 
0 

where the Cnk do not depend on t .  The phases U,&), called Lewis phases, are determined 
by 

h&(t) = n, k, t ifi- - &t) n, k, t (2.7) ( K t  I 1 
where In, k, t )  are the eigenstates of f ( t )  with eigenvalues An. As f ( t )  is an invariant 
operator, its eigenvalues do not depend on time. 

We now show how to relate the two formalisms. Assuming that the invariant f(t) is 
T-periodic and that its eigenvalues are non-degenerate, In, k, t )  = In, t ) ,  then the eigenstates 
of f ( t )  satisfy 

(2.8) In, T) = In. 0) 
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and a particular Lewis and Riesenfeld solution I@"(t)) after one period is 

(cf (2.6)). Thus, I@n(0)) are the eigenstates of G ( T )  with eigenphases "(T). In other 
words, the Lewis and Riesenfeld solutions I@"@)) are the Floquet states with associated 
quasi-energies 6. = -an(T)h /T .  The quasi-energy spectrum, being determined by (2.7), 
is in one-to-one relation with the specmm of the invariant. 

Following the procedure of Moore and Stedman, we can choose I@"(O)) as the cyclic 
initial states. At this point, one can avoid the use of the evolution operator in the following 
way: writing i ( t )  = L^(t)e-iar, the states IYn(z)) = i(f)l!hn(0)) in (2.4) are 

L^(T)  I@"(o)) = I@"(T)) = e'&(') ~ n ,  0) = eio*(T) I+,,(o)) (2.9) 

lqn(t))  = 00) e& I@"(o)) = e-kn(T)r'Tl@n(t)) 

i(qn(t)pin(t)) = u.(T)/T - kn(t)  + i(n, tln,'t) 

(2.10) 

(2.1 1) 

and 

from which we obtain, by inserting into equation (2.4), the geometric phase 
T 

y d T )  = i i  (n,tln,'t)dt (2.12) 

for these initial states. Now, let us make some remarks. As pointed out in the introduction, 
the formalism of Moore and Stedman [4] is based on the assumption of the knowledge 
of C ( t )  and furthermore it is necessary to find &). The problem of finding the exact 
evolution operator of a system is frequently a difficult task, and even if it is known the 
decomposition involved to obtain i ( t )  is laborious. But, if an invariant m be found that 
satisfies the following conditions: 

(i) the eigenstates In, t )  of i ( t )  are a complete set, 
(i) f ( t )  does not involve timederivative operators, 
(iii) the invariant i ( t )  is T-periodic, 
(iv) its eigenvalues A. are non-degenerate, 

the cyclic initial states are given by the particular Lewis and Riesenfeld solutions I@"(O)), 
and the geometric phases can be easily calculated from (2.12) rather than from (2.4). 

In what follows, we show that it is in principle possible to find such an invariant operator 
for systems whose Hamiltonians can be written as 

N 
k(t) = C h i ( f ) ? i  (2.13) 

where the set of operators ( ?I, . . . , ?N ) generates a dynamical algebra, which is closed 
under the action of the commutator 

i=1 

N 

[Pi, Pi] = c; Pk (2.14) 

with structure constants C&. The Pi do not explicitly depend on time and the coefficients 
hi( t )  are T-periodic in the case considered here. 

k=l 

We seek an invariant operator as a member of the algebra 

(2.15) 
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The invariant condition (2.5) leads to a system of linear first-order differential equations, 

(2.16) 
where a(t) is a N-dimensional column vector, whose components at@) are real because 
the invariant is Hermitian, and A(t)  is a T-periodic matrix with elements 

which in matrix form reads 

h(t) = A ( t )  . U(!) 

(2.17) 

The system of equations (2.16) are here called auxiliary equations and any particular solution 
of it may be used to construct an invariant operator of the form given by (2.15). 

It is worth noting that a serious problem in dealing with equations with periodic 
coefficients is the lack of a general method to obtain their solutions. Each equation requires 
special study and whole books have been devoted to some of them [ I  1,121. 

However, in the case of having them, a,@) can be determined from ak(0). Then the 
periodicity condition on the invariant operator leads to N equations in ak(O),  which means 
that by appropriate choice of the initial values ~ ( 0 )  we can (in principle) switch the desired 
condition on the invariant to be fulfilled. 

In what follows we apply the formalism to two important model systems: the generalized 
harmonic oscillator and the two-level system. 

3. Generalized harmonic o d a t o r  

The Hamiltonian for the generalized harmonic oscillator is 

f i ( f )  = $ [ X ( t )  Q* + Y ( t )  (2 + i j )  + 2(t) d* 1 (3.1) 
where and j are the position and momentum operators satisfying the canonical 
commutation rule [$, t] = ih and R(t) 7 ( X ( t ) ,  Y ( t ) ,  Z ( f ) )  is a time-dependent, real- 
valued parameter vector. When R is fixed, H describes a harmonic oscillator with frequency 
w = ( X Z  - Y2)] / ’ ,  provided X Z  - Y 2  > 0 and one can denote w(t )  as the instantaneous 
frequency. 

The system (3.1) has a well known dynamical invariant, the so-called (generalized) 
Lewis invariant [131 

(3.2) 

with r ( t )  = Z’/*p(f),  where the auxiliary function p ( t )  is a solution of the so-called Milne 
equation [14,15] 

With 

1 2  3 (gy - 2 -  d (Y) - 
2 2  4 z dt Z 

= w + - - - - (3.4) 

A short derivation as well as a discussion of the T-periodic solutions of (3.3) can be found 
in appendix A. In the most often discussed simplified case 2 = constant = 1, and Y = 0, 
the invariant (3.2) reduces to the result derived by Lewis [7.8]. 
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As is usual for harmonic oscillators, we define (timedependent) raising and lowering 
operators 

so that [c?,Bt] = 7 .  Then the invariant operator can be written as f ( t )  = (6th + ;)E 
and its eigenstates are the normalized eigenstates In, t )  of the number operator it;, with 
non-degenerate eigenvalues A, = (n + i ) h ,  n = 0 ,1 ,2 , .  . . . The relative phases of two 
eigenstates In, t) are fixed by 

ir In, t )  = J;;In, t )  (3.6) 

except one, say the ground-state phase, which is still arbitrary. For this example it is 
convenient to first find the Lewis phase u,,(t). We need the diagonal matrix elements 
(see (2.7)) of @ ( t )  and ih a/% where the latter ones will provide the generalized Berry 
phases we are looking for. In what follows, we denote In, t )  = In) for convenience. 

8' In, t )  = J ; 1 T I l n  + 1, t) 

From (3.1) and (3.6) we obtain 

(nl H In) = - 
2 

and, using (3.6) and taking the convenient scalar product, we find 

Evaluating the first term with the help of (3.5) we have 

and (2.7) thus yields 

cu,(T) = -$ (n  + 4) I' ""' i 2  dt 

(3.7) 

(3.9) 

where we have chosen a convenient phase, which we will call the Lewis gauge, for the 
ground state 10) 

(3.10) 

Then, using (3.8). (3.10) and (2.12). and assuming that a periodic or anti-periodic, real 
or purely imaginary solution p&) of (3.3) exists (see appendix A), the generalized Berry 
phase in the Lewis gauge is 

(3.11) 

with rp = z1/2pp. 
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4. lko-level system 

For this system, the most general Hamiltonian operator can be written as 

D B Monteoliva et al 

g(t) = f [ Z I1)(1 I - Z W@l+ (X - iY) I1)(21 t (X + iU) IZ)(l I ] (4.1) 
where R(t) = (X(t), U@), Z(t)) is timedependent real vector parameter and 11) and 12) 
are the energyeigenstates for the X = Y = 0 problem, which we take as a fixed basis. In 
such a basis, H ( t )  can be represented by the matrix 

H(t) = 4 R(t). U (4.2) 
where U = (q , UZ. u3) is a vector of the Pauli matrices. We need an invariant operator for 
this system. As [ui, uj] = 2i ~ t j k  ui the Pauli matrices form a closed algebra. Thus, we can 
apply the ideas of section 2 to consmct the invariant. Writing 

I ( t )  = a @ ) .  U (4.3) 
the real vector function a = (al .  az. a3) satisfies the system (2.16) with 

0 -z 
A(t) = ( -i -% ) . 

In a shorter way, this equation can be written as 
f i a = R A a .  

The eigenstates of l ( t )  are 

(4.4) 

for each eigenvalue A =&]al. From (4.5) we can easily verify that 

ifi a p t ,  namely 

= 0. 
Thus, from (4.1). (45) and (4.6), we can find the diagonal matrix elements of H(t) and 

1 
2A 

(AI H [ A )  = - R * U 

(4.7) 

Then, assuming a periodic solution %(t)  of the auxiliary vector equation (4.5) (see 
appendix B), the Lewis and the generalized Berry phases are 

dt 

and 

(4.8) 

(4.9) 

5. Adiabatic limit 

In order to compare our results for the Berry phases with the conventional ones appearing 
in the literature, we have to consider the adiabatic l i t .  As usual, we write d/dt = ~ d / d s  
and expand the solution of the auxiliary equations in terms of the adiabatic parameter E. 
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5.1. Harmonic oscillator 

For this system, the expansion of the solution p( t )  of the auxiliary equation (3.3) is 
p ( t )  = &(t) + E p~ ( t )  + E' &(t) + . . I ,  which when inserted in (3.1 1) gives 

where the primes denote a derivative with respect to r and p,' can be found from (3.3) 

(5.1) 
Thus, inserting into (3.1 1). the conventional (adiabatic) Berry phases are obtained up to first 
order in E 

p,' = (X 2 - Y2)-1/2. 

in agreement with the known result [16]. 

5.2. Ilvo-level system 

In this case, the expansions for the functions ai@) of the auxiliary equations (4.5) are 
ai(t) =ai&) + E  ail(t) + &'aiz(t) +. . .. which when inserted into (4.9) yields 

+ a3o)-'*;l} + o(E2) + . . . (5.3) 

with = ato+a&+a:w From (4.5) we can evaluate the expansion coefficients ai0 and ail 
for i = 1.2,3. To compare with the results appearing in the literature we solve the special 
case of a latitude variation of the parameters R(t )  [17], i.e. 

where B, 0 and w are real numbers. This leads to 
Z = B cos0 X = B sin0 cosot Y = B sin0 s h o t  (5.4) 

alo = CI me ~ o s w t e - ' f l ~ * ~  

am = CI tan0 sinot e-1/2sin*e (5.5) 
= cI e-I/2~ir?R 

and 
all = C2tan8cosot + h o ClE-' tan0sec 0 cosor 

a21 = C2 tan8 s h o t  + h w CI E-' tan0 sec8 sinwt 

0 3 1  =CZ 

(5.6) 

where C1 and CZ are real-valued constants. Thus, substituting (5.4), (5.5) and (5.6) into (5.3) 
we obtain to 6rst order in E 

Y*(T) = -Z (1 F case) (5.7) 
as was found in the adiabatic limit [17]. The f signs correspond to the two possible signs 
of 1. 
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6. Discussion 

In the present paper, we have developed a formalism for calculating generalized Berry phases 
when a T-periodic invariant operator is known. Two examples are worked out in detail to 
illustrate these ideas. The Lewis and Riesenfeld solutions are found to be the appropriate 
cyclic initial states and for the calculation of their associated geometric phases only the 
set of eigenstata of the invariant operator is needed. The simplicity of this calculation is 
demonstrated, in the sense that we do not need the knowledge of the evolution operator and 
neither make any further decomposition of it. 

We have also presented-for systems whose Hamiltonian provide a closed Lie algebra- 
a method that in principle allows the construction of the T-periodic invariant operator. Also 
in this case, however, there remains the problem of the existence of a periodic solution of 
the auxiliary equation, which demands further investigation. 

For the two-level system we have for the first time constructed a dynamical invariant, 
which then provided the generalized Berry phases for this system. The case of latitude 
variation of the parameters has been analysed in detail and it tumed out that a T-periodic 
invariant can always be found. We have also calculated the generalized Berry phases for the 
generalized harmonic oscillator whenever the normalized solutions of the Hill equation (A.5) 
associated with (3.3) are stable. 

In both cases the conventional Berry phases are obtained when the adiabatic limit is 
taken. 

D B Monteoliw et al 
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Appendix A 

The invariant operator for the generalized harmonic oscillator can be found following the 
ideas outlined in section 2. The generators of the Lie algebra are @ / 2 ,  (@b+j@)/2, j22/2), 
which is closed and the dynamical invariant 

i ( t )  = 4 (a, ( t ) ~ ’  + az (t)(+d + + a3(t)b2) (A.1) 
is determined by the coefficients a&), which are are real functions satisfying the linear 
differential equations (2.16) with 

-2Y 2 x  

A ( t ) =  [ -Z 0 z )  . (A.2) 
0 -22 2Y 

This system can be reduced to a single second-order equation: setting na(t) = Zp2(t), we 
find 

(A.3a) 

(A.36) 

(A.3c) 

az(t) = (Y - 2/2Z)p2 - pp 

d l ( t )  = 2Xa*(t) - 2YUl(t) 

a1 ( t )  = x p Z  - az(t)/z. 
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Equating the time derivative of (A.3c) with (A.3b) and integrating, we obtain 
equation (3.3). In terms of r = Z’/’p the expression for the invariant is given by (2.15). 

Now, the periodicity condition for the invariant, as is easily seen from the expressions 
for a&) in terms of p ,  implies periodic or anti-periodic, real or purely imaginary solutions 
of (3.3) 

p(t + T) = i p ( t )  b(t + T )  = ?+(t) p(t)  = i‘g(t) (A.4) 

We now seek these solutions. The general solution of (3.3) can be written in terms of 

y+Q:y=o (A.5) 

~ ( 0  =   AY:^) +  BY^% + W i ( t ) ~ z ( t ) l ~ ’ ~  (A.6) 
where A ,  E and C are related to the initial values p(0) and p(0). and A B  - C2 = W-’, 
the Wronskian of the two solutions yl(t) and yz(t), which can be chosen as the normalized 
solutions, i.e. y1(0) = yz(0) = 1, yl(0) = ~ ( 0 )  = 0, so that W = 1. 

As the Hill equation (AS) has a T-periodic coefficient Qi(t), the Floquet theorem 
provides a fundamental set of solutions 1181 whose form, if A I  # 12 .  is 

where g(t) is a real function. 

two particular independent solutions y ~ ( t )  and y&) of the associated Hill equation I151 

as 

f i ( t + ~ )  = ~ ~ f ~ ( o  f 2 ( t + ~ ) = ~ , f 2 ( t ) + e f , ~ t )  (A.@ 
are the roots of the 

The roots AI and A2 of the characteristic equation completely characterize the periodic 

where 8 is a constant real number, and AI  = eiYT,A2 = 
characteristic equation L2 - [y1(T) + yz(T)] + 1 = 0 associated with (A.5). 

and anti-periodic solutions of the Milne equation [15.19] 

(i) If AI  # 12,  there exists a periodic solution 

which is either real, or purely imaginary only if lyl(T) + yz(T)I < 2, i.e. when yI@) 
and y2(t) are stable (in other words: in the stability band of the corresponding Hill 
equation). This periodic solution is unique up to a factor ix, k = 0,. . . , 3 .  

(ii) If if A1 = 1 2  = f l  there is no periodic solution provided that 0 # 0; otherwise all 
solutions are T-periodic and these solutions are real when yl(t) and yZ(f) are stable, 
i.e. if yl(T) + yz(T)  = *2 and yz(T) = yl(T) = 0. 

Appendix B 

For the two-level system, we will analyse the case of latitude variation of the parameters 
R(t), provided by equation (5.4). For this case, the auxiliary equations (4.5) are 

f iat  =Bsin0sinwta,-Ecos0az 

fia2=EcosBal -Bsin0coswta3 (B.1) 
ha3 = B sin0 coswf az - E sin0 shot a1 
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with initial conditions q(0) = y o  . After some manipulation, it is possible to reduce the 
system to a single equation in u3: 

D B Monteolivu et a1 

+ Q;us(r) = k (W 
where 

Q: = [Go - B cos6)z + B2 sin' 6 ] / h 2  

k = [ @ o -  BcosB)xy,- B sin6xlo](hw- Bcos6) /h2 .  

and 

%us, the general solutions for this case are 
u ~ ( t ) = F D G c o s o t c o s 5 2 ~ ~ + x p E F c o s o t s i n 5 2 ~ t + G D / E  sinotsin522t 

- x p  sin COS nzt t [ X I O  - F D GI C O S O ~  

u ~ ( t ) = ~ p ~ ~ ~ ~ t ~ ~ ~ Q ~ t - G / E ~ ~ ~ o f s i n Q ~ t + F D G s i n o t w s ~ z ~  (B.3) 

+ x p  F E sin o ~ t  sin Ozt + 1x10 - F D G I sin of 
4) = D cos Q2t + XU)  E / G  sin 5222 - C 

where C = -k/523, D = (x30+C), G = B-I sin-' 6. E = h-'a;' ,  and F = h o -  B cos6 
are all real numbers. At this point, we impose the periodicity condition j(T) = f(O), which 
leads to q(0) = Q ( T )  = xm, and so we find the appropriate initial values 

xm = -hoB-' sin-' 6 cot nQz/o 

X U )  = [ ( h o -  Bcos6)2B-2sin--26+ l]co?n52~/o+(cot6 -hoB-'sin-'6)xlo 
for 522 # n o  and x10 any real number. When 522 = no we see by simple inspection of (B.3) 
that the solutions U&) are T-periodic, so that any d value is available for XW) .  Thus, the 
periodicity condition for the invariant operator is fulfilled. 

(B.4) 
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